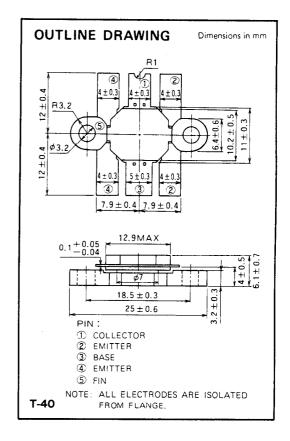


NPN EPITAXIAL PLANAR TYPE

DESCRIPTION


2SC2630 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 7dB$ $@V_{CC} = 12.5V, P_0 = 50W, f = 175MHz$
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 50W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance: $Z_{in} = 0.8 + j1.2\Omega \text{ @P}_{O} = 60\text{W}, \text{V}_{CC} = 12.5\text{V}, \text{f} = 175\text{MHz}$ $Z_{OUT} = 1.5 j0.6\Omega$

APPLICATION

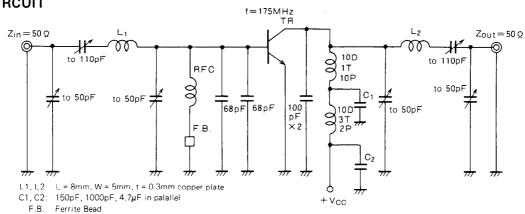
40 to 60 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (To = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Conditions Ratings	
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		14	Α
Pc	Collector dissipation	Ta = 25°C	5.5	14/
		T _C = 25°C	100	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C
Rth-a	Thereselections	Junction to ambient	27.2	°C/W
Rth-c	Thermal resistance	Junction to case	1.5	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

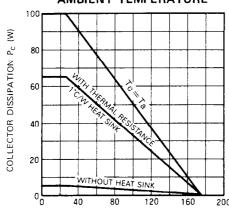

Symbol	Parameter	Test conditions	Limits			11. 1
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E = 10mA, I _C = 0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C = 0.1A, R _{BE} = ∞	17			V
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			5	mΑ
I _{EBO}	Emitter cutoff current	V _{EB} = 3V, I _C = 0			5	mA
hFE	DC forward current gain *	V _{CE} = 10 V, I _C = 0.2 A	10	40	180	_
Po	Output power	V _{CC} = 12.5V, P _{IN} = 10W, f = 175MHz	50	60		w
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change

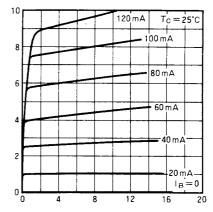
TEST CIRCUIT

COLLECTOR CURRENT Ic (A)


NOTES: All coils are made from 1.5mm p silver plated copper wire

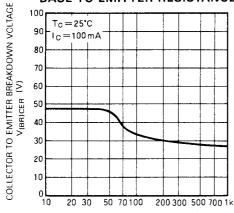
D: Inner diameter of coil Turn number of coil P : Pitch of coil

Dimension in milli-meter

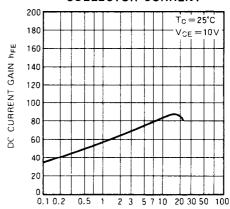

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)


COLLECTOR CURRENT VS. **COLLECTOR TO EMITTER VOLTAGE**

COLLECTOR TO EMITTER VOLTAGE VCE (V)

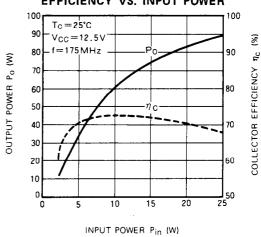

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE

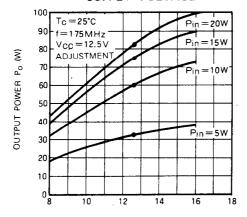
BASE TO EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)


NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE



COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)